Friday, March 31, 2017

Brute Force and The AAVSO Data on Boyajian's Star

We have more than 500 days span of data from the AAVSO data on Boyajian's star now. I thought it might be worth a closer look to see if any of the secular dimming seen by either Schaefer in the archival plates or Montent and Simon in the Kepler full frame images might still be going on.

I am not a world class statistician, but sometimes a naive approach is interesting if we employ standard method knowing that our the systematics in the data are not well characterized yet.

A little background information


So, a brief explanation of what the AAVSO does. Many of their members have equipped their telescopes with special electrically cooled digital cameras and optical filters that together can measure the brightness of a star in a particular color, or band, of light with respect to standard comparison stars.  The colors we concern ourselves with right now are known as Blue, Visual, Red, and Infrared, or B,V, R and I for short.

Over many decades, the AAVSO has done a great deal of careful work finding and observing comparison stars, which are in turn compared to each other. Each observer procures his or her own equipment, pays for access to training materials, and is responsible for making sure their gear is in good working order. They are supplied with AAVSO software that turns the digital counts on the cameras into a brightness, or as it is known, a magnitude.

There are really only two things you need to know about magnitude to avoid being confused with what is to come. Some of it is historical accident, but it still makes sense in a way - unlike English spelling, which is all historical accident and little of it makes sense anymore:

  1. A higher magnitude means the source is dimmer.  The brightest things in the sky have a negative magnitude, and the dimmest thing you can see with your naked eye on a dark, moonless night is around magnitude 6. This is why the Y axis of the points you will see seems to be upside down, with the higher numbers lower on the Y axis.
  2. A small difference in magnitude is a big difference in brightness, because the scale is logarithmic. This actually makes sense, since the brightness of astronomical objects varies over a huge range. A decrease in brightness by a factor of 100 is 5 magnitudes.

The AAVSO Data so Far

I want to start with spoilers. No one should get too excited about this yet. We need more data taken over a longer time span to confirm that the Schaefer dimming is still going on. There are several possibilities left standing, including that there is no dimming going on, although my unconfirmed hunch is that there is some dimming taking place. Permit me to explain.